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Vectors In 2-Space

» Ascalar is a real number or quantity that has a
magnitude, such as length and temperature

A vector has both magnitude and direction and
It can be represented by a boldface symbol or a
symbol under an arrow, v or 43
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Figure 07.1.1: Examples of vector quantities
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Vectors In 2-Space (cont’d.)

* Characteristics of vectors

— The vector AB has an initial point at A and a
terminal point at B

— Equal vectors have the same magnitude and
direction

— The negative of a vector has the same magnitude
and opposite direction
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Vectors In 2-Space (cont’d.)

 Characteristics of vectors (cont’d.)

— If k=0 Isascalar, the scalar multiple of a vector
kAB is a vector that is |k| times AB

— Two vectors are parallel if they are nonzero scalar
multiples of each other

— - /3 > 1 =
AB [/-AB EAB }/_ZAB

Figure 07.1.3: Parallel vectors
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Figure 07.1.5: Vector C_B? is the difference ofﬁ and A_é

Addition and Subtraction
of 2-space vectors

(b)

— -
Figure 07.1.4: Vector A_ﬁ is the sum of AB and AC
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Addition of 2-space vectors

Law of Cosines

S —12 12 — =
\ZH\X\ o] + 2R Fcosto
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Vectors In 2-Space (cont’d.) /
a=2i-3)=(2,-3) O
» Avector a=(a,,a,) is an ordered pair of real
numbers where a, and a, are the components
of the vector

— Addition and subtraction of vectors, multiplication
of vectors by scalars, and so on, are defined Iin
terms of components

Definition 711  Addition, Scalar Multiplication, Equality

Let a = (a,, a,) and b = { b, b,) be vectors in R*.

(i) Addition: a +b = (a, + b, a, + b,) (1)
(ii) Scalar multiplication: ka = {(ka,, ka,) (2)
(iii) Equality: a=b ifandonlyif a,=b,,a,= b, (3)
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Vectors In 2-Space (cont’d.)

* The component definition of a vector can be
used to verify the following properties of
vectors

Theorem 7.1.1 Properties of Vectors

(i) at+b=b+a <« commutative law  ggud

(i) a+(b+tec)=(@a+b)t+c <« associative law Lﬂ?qlﬂumx]:

(iil) a+0=a « additive identity lnaneninisuan
(ivy a+(—a)=20 <« additive inverse NAKNNTL9N

(v) k(a+ b)=ka + kb, k a scalar

(vi) (k, + k,)a = kja + k,a, k, and k, scalars

(vii) k,(k,a) = (kk,)a, k, and k, scalars

(viii) la=a

(ix) Oa=0 <« zero vector
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Vectors In 2-Space (cont’d.)

* The magnitude, length, or norm of a vector
a Is denoted by |a|| =a’ +a;

* A vector u with magnitude 1 is a unit vector

— u=(1/||a|)a is the normalization of a |

— The unit vectors i=(1,0) andj=(0,1) arethe '|.
standard basis for two-dimensional vectors

a:<a11a2>:a1i+azj -\“r ““““““ j

where a, and a, are horizontal and vertical “| ~ |

components of a, respectively
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Vectors In 2-Space (cont’d.)
Vector Operations Using i and j

(a) (4,7)=4i+7j

(b) (2i —5j) + (8i + 13j) = 10i + 8j

© i +jl=V2

(d) 10(3i — j) = 30i — 10j

(e) a = 6i + 4j,b = 9i + 6j are parallel, since b is a scalar multiple of a. b = 3a.

EXAMPLE Graphs of Vector Sum/Vector Difference
Leta=4i+ 2jand b = —2i + 5j. Grapha + band a — b.
SOLUTION The graphsofa + b = 2i + 7janda — b = 6i — 3j are given

y Y

Company
ning.com

(a)




Vectors In 3-Space

* In three dimensions, or 3-space, a rectangular
coordinate system Is constructed with three
mutually orthogonal axes

pime__ dmasaasanses .
Z+ I
T P(a, b, C)// I
‘ e L |
plane : I I
| x=a | :
c |
' a | A&\
: : yr plane
- o Y | y = b
e e X b
right hand
(a) (b)
Figure 07.2.2: Rectangular coordinates in 3-space Figure 07.2.3: Octants

© Sharpshot/Dreamstime.com Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



Vectors In 3-Space (cont’d.)

* The distance between two points

d(PP) = (=% ) (Y, — i) +(2,-2,)

WHI282NN (d) izwdwﬂqﬂ (2,-3,6) uag (-1,-7,4)

0 =2 (=1))2 4 (=3=(=7))2 + (6-4)2 = /941644 =29
* The coordinates of the midpoint of a line
segment between two points

(&+& Y, + Y, A+Qj

D A DA o)
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Vectors In 3-Space (cont’d.)

« Avector a in 3-space Is any ordered triple of
real numbers

a=(a,a, )

Definition 7.21 Component Definitions in 3-Space

Let a = {(a,, a,, a;) and b = {b,, b,, b;) be vectors in R°.

(i) Addition:a +b = {(a, + b, a, + b,, a; + by)

(ii) Scalar multiplication: ka = (ka,, ka,, kas)

(iii) Equality: a = b if and only if a, = b, a, = b,, a5 = b,

(iv) Negative: —b = (—1)b = (—b,, —b,, —b;)

(v) Subtraction:a —b =a + (=b) = {a, — b, a, — b,, a5 — b;)
(vi) Zero vector: 0 = (0, 0, 0)

(vii) Magnitude: |a]| = Va? + a2 + d2
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Vectors In 3-Space (cont’d.)

» Any vector a=(a,,a,,a,) can be expressed as
a linear combination of the unit vectors
i=(1,0,0)  j=(0,1,0) k =(0,0,1)
a=(a,a,,a)=ai+a,j+ak

i A 1= (-1,3,7)
N 1 (—I.().7)

, c A 2= (3,3,7)
1k fa&_“ﬁﬁ A 3= (-1,6,4)
/ ) \ (3, 3, 4) 4 99 4=(3,6,4)

' 9ab56="?

@ (3,6,7), (-1,3,4)

Figure 07.2.8a: i, j, and k form a basis for R3
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Dot Product
* In2-space, a-b=a;b; +a,b,
 In 3-space,
* In n-space,

Theorem 7.3.1 Properties of the Dot Product

(1) a-b=0ifa=0o0orb=0

(1) a-b=b-a <« commutative law
(i)a-(b+c¢c)=a-b+a-c « distributive law
(iv) a-(kb) = (ka)-b = k(a-b), kascalar

(v a-ra=0

(vi) a-a= |al?

» Alternative form of the dot product a-b =|fal||b][cos&
a=-—3i—j+ 4k b = 2i + 14j + 5k, a-b=
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Dot Product (cont’d.)

2 vectors (a and b) are orthogonal If a-b=0

* The angle between two vectors Is given by

a=21+3]+K,b=—1+5]+k
a,b, +a,b,

ab, +
Cos O = HaH ‘bH HaH—r HbH— 27.ab=14

CoSO = = — 0~43.9°
V1427
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Component of a on b (USuaanans)

* The componentofaonb #e comp,a= ﬁ




Component of aon b

» The componentofaoni = comp.a= E A

 The componentofaon] = comp;a = il a-j

i

+ The component of aon k  —, comp, a - ak_ ook

K

Component of a on a vector b, we dot a with a unit vector in the direction of b
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Projection of a on b WSmaiawmes)

lif“iml,mfaﬁ*rmiqammlm t}

o = o) (1) = (22) (1) = ()1
b b/ \ bl TPANEY b-b
S
/_» \\\ia
ipr()jja
‘ ; z;?_'v unit ' b
proja /i i A vector _”T”
SR ¥ ‘/Plz’]bd/
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Projection of aon b

profa = Ccompy) (1) = (32) (1) = (=)

Find the projection of a = 4i + j onto the vector b = 2i + 3. Graph.
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Dot Product (Direction Cosines)

fha = aql + a,j + azk, w a, B, y sswiranewes a wax
nawes I, j k wzgnisenin “Direction Angles ™

K
COSa = ———,C0S f3 ,COSy =

HaHH | HaHHJH HaHH<H
COSa—— cosﬁ—a— COSy = ds

ol ol el

cosa,cos 5,cosy are called "Direction Cosines"
a=21+5]+4k

N S _1( 4
Ol = COS — (= 72.7° IB —COS — [=41.8° y =cos —— [~ 53.4°
V45 \ V45 | 45 )
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ADE
auyilsisvez C — H wiviu 1.1 A ,6=109.5°

iszee H — H=?

svox H—H = ||b — a| h —

Ib—al|l=+/(b—a)-(b—a)=+vb-b—-2a-b+a-a
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Cross Product

e Determinants munauw)

aQ @
bl b2

— a1b2 - a2b1

a 8, a
b, b b b b b
b1 bz bs =a g 3_32 : 3+a3 : :
C, G C, G ¢, G
¢, G G

» Cross Product of 2 vectors is given by

axb=

L)
a d
bl b2

K
a3
b,

= (azbs i asbz)i _(ale _aeb1)j +(a1b2 _aZbl)k
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Cross Product (cont’d.)

* axbis orthogonal to the plane containing a and b

* The magnitude of the cross product Is given by

ax bl =a][bjsin &

2 nonzero vectors are parallel if |[a x b|| = ||a]|||b]| sin0° =0
» a-(bxc)=0 ifa, b, and c are coplanar

right hand




Cross Product (cont’d.)

Theorem 7.4.1 Properties of the Cross Product

i) aXb=0 ifa=0orb=0oraparallel b
(i) aXb=—-—bXa

(iii) aX(b+c)=(aXb)+ (aXc)

(iv) (a+b)Xe=(@Xe)+(bXc

(v) a X (kb)=(ka) Xb =k(a Xb), kascalar
(vi)y aXa=90

(vii) a-(@aXb)=0

(viii) b-(a X b)=0



Lines and Planes in 3-Space

[\

* The vector equation for a line
IS r=r,+ta Py ¥y 2)

o < ¢ o A cglj
— I, Iy, I, ABLIAMaTAINYAN LAYl |

Px, y,2)

NAUNTS

—d1nans t Asnnsieas x

Figure 07.5.1: Line through distinct points in 3-space

’~3 (1 =] [~ ga
—13AL993 a ALIALNBSTIANNY
@ianfganuIaneas I-r,)
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X

* YWIEUNITNALNBTANUSULAUNSTINEU (2,-1,8) wag (5,6,-3)

a=<2-5-1-68-(-3)> = <-3,-7,11>
159
a = <5-26-(-1),-3-8> = <3,7,-11>

U/

ALY FUNISIALNDS NANYNAU
<X,y,Z2> =1r,+ 1*a = <2,-1,8> + t<-3,-7,11>

O er SRR S Sl bl S oIl
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Lines and Planes in 3-Space (cont’d.)

» The vector equation for a plane is n-(r—r,)=0

— Plane passes through a given point and has a specified
normal vector n

— I, and r are vectors from the origin (0,0) to points P, P
on the plane
A n
1y

o P

" &)

I P (x5 ¥ 29) =t P(x, y, 2
r

Origin

(a) (b) Ascend Learning Company
www.jblearning.com

Iy

Figure 07.5.3: Vector n is perpendicular to a plane



Examples

WHITUNITVUDITY ‘L!T]JG])’QiJl,’Jﬂmf:]i@Qﬂm n = 2i + 8j — 5k uag mm (4,—1,3)

n

DYUUILUILAINAI? n-(r-r,)=0
PP=r—-r=—-4)i+F+Dj—(z-3)k=0 §
1. (I‘ — I‘l) = Z(X — 4) + 8(y + 1) T 5(Z — 3) = O /1(‘1;‘%’/’(.\; ¥, 2)
S ANNITUDITEUIL AB 2X + 8y — 5z + 15 = 0

1

2. WHITUNIVDITLUIUNNYA (1,0, —1), (3,1,4) uag (2, —2,0) 0gUUTLUI

(3,1,4)
(1,0, —1)
(3,1,4)
(2,-2,0)
% y,7)

uxyv=

}u=2i+1j+5k, Z

}V=1i+3i+4k 3

16|~ g™ Yy

(2"_2,0)}w =x—-2)i+(y+2)+zk /Ai/
i j k 2 %
2 1 5|=-11i—3j+5k —16
1 3 4 :

(uxv).w=0=-11(x—2) —3(y+ 2) + 5z

S eSS 7 N = ()
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Examples

3. mmﬁumﬁmmﬁwmﬁﬁ@ﬂ (1,2,-1), (4,3, 1), (6, 4, 4) 0gUUTZUI
(1,2,—1)
(4,3,1)

4,3,1 : :
E644§}V=21+1]+3k

}u=3i+1j+2k

4,3,1 : )
gxyz%}wz(X_4)l+(y_3)]+(z_1)k
i | k
uxXxv=|3 1 2[=i-5+Kk
2 1 3

uxv).w=0=(x—-—4)-5(y—-3)+(z—-1)
n-(r—r):O X—5y+z+10=0
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Examples
m Graph of a Plane

Graph the equation 2x + 3y + 6z = 18.

m Graph of a Plane

Graph the equation 6x + 4y = 12,

DETZERPI  Graph of a Plane

Graph the equationx + y — z = 0.
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Orthonormal Basis (31U4596019R10)
* Every vector u In R? (n=2) can be written as a linear

combination of the vectors in the standard basis B =

{el, ez}, where €1 = X=1i= (1,0), €r) = j\’ = ] = (0,1)

* Every vector u in RS can be written as a linear combination

of the vectors In the standard basis B = {eq,e5,€e3} =

{i,j, k} 50 i = (1,0,0), j = (0,1,0), k = (0,0,1)
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Orthonormal Basis (31U4596019R10)

 Every vector u in R” can be written as a linear combination
of the vectors in the standard basis B =
{eq,€,,... ,e,}, Where e; = (1,0,0,...,0), e, =

(O)l;o) ) O)) L en — (O)O;O; ) 1)
* Orthonormal basis = mutually orthogonal (e; - ¢; = 0,i # j )
and unit vectors (|le;|]| =1 ,i =1,2,...,n)

« HOW TO transform or convert any basis B of R” into an

orthonormal basis?
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Example of Orthonormal Basis for RS

de2=[001] =k

y=x[0]i+ x[1]j+ x[2]k

y = z[0]el + z[1]el + x[2]e2
= H{[O]wr+3{[ 1wl +3{[2] w2

el=[010] =j
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Example of Orthonormal Basis for R”

The set of three vectors

1 1 ] 2 1 ] 1 1
w] — < ’ ’ >,W2 — <_ ’ s >3 w3 - <09 ' > (1)
V3 V3 V3 Ve Ve Ve V2 V2
is linearly independent and spans the space R°. Hence B = {w,, w,, w3} is a basis for R”.
Using the standard inner product or dot product defined on R, observe

Wi w,=0,w,-w;=0,w,-w3;=0, and |[w]|=1,[w,] =1, |w| =1.

Hence B is an orthonormal basis. =

A basis B for R" need not be orthogonal nor do the basis vectors need to be unit vectors.
u :<13030>3 l12:<1, l,O), u’%:<13131>

in R’ are linearly independent and hence B = {u,, u,, u;} is a basis for R”. Note that B is not an
orthogonal basis.

Generally, an orthonormal basis for a vector space V turns out to be the most convenient basis
for V. One of the advantages that an orthonormal basis has over any other basis for R" is the
comparative ease with which we can obtain the coordinates of a vector u relative to
that basis.



Orthonormal Basis

Theorem 7.7.1 Coordinates Relative to an Orthonormal Basis
Suppose B = {w, w,, ..., w, } is an orthonormal basis for R”. If u is any vector in R", then
u=@@-w)w; + (u-wy)w, + --- + (u - w,)w,,.

[ > < 2 1 1 > < 1 | >
wl — < ’ ’ ’ w2 — o ’ ’ ’ w3 — 0 ’ s
V3 V3 V3 Ve Ve Ve V2 V2
Find the coordinates of the vector u = ( 3, —2, 9) relative to the orthonormal basis B for R’
given in (1) of Example 1. Write u in terms of the basis B.

SOLUTION From Theorem 7.7.1, the coordinates of u relative to the basis B in (1) of Example 1
are simply

11
and u-wy; = ———=

75



Gram-Schmidt Orthogonalization Process
(unsu-viindi oelslnuea Tnsivd)

Gram— Schmidt orthogonalization process is an algorithm for
generating an orthogonal basis B' = {v;, v,, ... , v, }, from any
given basis B = {uq,u,, ... ,u,}, for R”

How?

Key idea in the orthogonalization process Is vector projection
(NUNIU projpa)

Creating an orthonormal basis B = {w;,w,, ... ,wy} by
normalizing the vectors in the orthogonal basis B’
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Gram-Schmidt Orthogonalization Process
(Constructing an Orthogonal Basis for R?)

« Transformation of a basis B = {uy, u,}, for R*

into an orthogonal basis B' = {v;, v,} consists
of 2 steps.

(a) Linearly independent vectors u; and u,

* The first step, we choose one of the vectors in
B, say, u;, and rename it v4

Projy,u;

* Next, we project the remaining vector u, in B
onto the vector v; and define a second vector
tO be VZ — uZ — prOjvluz

(b) Projection of u, onto v,

,,,,,

) proj u — (uZ'vl) V Vo= U, Pl\\i‘,lll:
e Vi'Vi

v =
roj
projy,u;

(¢) v, and v, are orthogonal
© Sharpshot/Dreamstime.com Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company
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Gram-Schmidt Orthogonalization Process
(Constructing an Orthogonal Basis for R?)

A

—
——
—
—
—
——
-

u2°v1 Vo =1 Pl’U_i‘.luz
e ( ) Vil

v, and v, are orthogonal

projy, (U
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Gram-Schmidt Orthogonalization Process
(Constructing an Orthogonal Basis for R?)

The set B = {u, u,}, where u; = (3, 1), u, = (1, 1), is a basis for R*. Transform B into an
orthonormal basis B” = {w, w,}.

SOLUTION We choose v, as u;: v; =

(3, 1). Then from the second equation in (3), with Y u,
u, ' v, = 4and v, - v, = 10, we obtain 1 "
2
1 3
1, 1 ——31 ={—- 7).
= LD 10 3. 1) = < 5 5> 1 I 2 2 X
The set B' = {v,,v,} = {(3, 1), <—§, 5)} is an orthogonal basis for R?. We finish by normal- (a) Basis B _
izing the vectors v, and v,:
-‘!
1 < 3 I > d 1 < 1 3 > W, It
Wi =77V = e an Wy = —— —_—
Ivi V10 V10 vall ™2 V10 V10
Wi
The basis B is shown in FIGURE 7.7.2(a), and the new orthonormal basis B” = {w,, w,} is shown 7; I 2 ? *
in blue in Figure 7.7.2(b).

= (b) Basis B”
In Example above we are free to choose either vector in B = {u,, u,} as the vector v,. However,

by choosing v, = u, = (1, 1), we obtain a different orthonormal basis, namely, B” = {w,, w,}

where w, = (1/\V2,1/V2)and w, = (1/V2, —=1/\V/2).

© Sharpshot/Dreamstime.com Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company
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Gram-Schmidt Orthogonalization Process
(Constructing an Orthogonal Basis for R>)

Now suppose B = {u,, u,, u;} is a basis for R".
Then the set B' = {v,, v,, v3}, where

Vi — Uy projy u,

U,V 4
Vo — Uy ™ Vi

Vl‘Vl

-~
b
|
e
b
|
N\
< | =
= ] I
< | =
<
|
N\
< | =
L T S
SRS
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Gram-Schmidt Orthogonalization Process

(Constructing an Orthogonal Basis for R3)
The set B = {u;, u,, u3}, where wu, =(1,1,1),u, =(1,2,2),u;; =(1,1,0)
is a basis for R>. Transform B into an orthonormal basis B”.
SOLUTION We choose vyas u;: v, = (I, 1, 1). Then from the second equation in (4), with
u, v, = Sand v, - v, = 3, we obtain
5
v, =(1,2,2) — ;(I, 1,1) = <—

Now withus - v, =2,v, - v, =3,u3- v, = —3,and v, - v, = % the third equation in (4) yields

Z 3% a> <"% ‘%>

The set B’ = {v,, v5, va} = {{1, 1, 1), (-3, %,% %, 5)} is an orthogonal basis for R>.
B" = {w,, w,, w3}, where A=[111122110];
o B = grams(A)

A S L A A 2



Gram-Schmidt Orthogonalization Process

Theorem 7.7.2 Gram-Schmidt Orthogonalization Process

LetB = {u,,u,,...,u,},m=n,beabasis for a subspace W,,of R". Then B’ = {v,v,,...,V,},
where

<
2

Il

=
2

I
N
< | =
= b
< | -
i
=<

us- v usz- v, 7
V3:“3_ Vl - V2 ()
VitV Vy° ¥V,
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1s an orthogonal basis for W,,. An orthonormal basis for W, is
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B" = {WI,WQ,...,wm} = { Vi, VZ,...,_Vm}. any
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Gram-Schmidt Orthogonalization Process

e quyddn B = (Wq, Wy, ..., Wy hiluguseann (Orthogonal

basis) dwiu R™ wazér u uiawmeslaglu R™, e
u=(u-wp)wy; + (u-wy)wy, + -+ (u - w,)wy,

1 Y
(%4

* 57u B 298¢ R" aunsagnuvaslugiudiaemin

B' = (vq,Vy, ..., V) udawdaadugruiideann B =
(W1, Wo, ..., W) Tnsmsiinuesuesaladiiamesiu B’
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Gram-Schmidt Orthogonalization Process

* fhedre: msulaadn B = {uq, Uy} Wiluguasain B

{Wl,Wz} (Iﬂ‘él‘ﬁ Uq = (3,1) wae Uy = (1,1))

—1@on vy = uy = (3,1) UL v, = uy — (“2"’1) vy =

V1-Vi
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— @ B’ = {(3 1), <—1 §>} awumummnmmu R?

© Sharpshot/Dreamstime.com Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



Gram-Schmidt Orthogonalization Process
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U3glivanimas (Vector Spaces)

o Wnvandawmes B = (X1, X2, ..., Xp) lutsgiinnmes V
AaLnausinana unsu V an
— B ({Wudaszuuudady (linearly independent)
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—kixXq + kX9 + -+ kX, = 0wsz kg =
k, =k, =0
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Introduction to multi-variable calculus.
Polar coordinates.

Analysis of functions of several variables,
vector valued functions,

partial derivatives, and

multiple integrals.

\ector analysis.

Optimization techniques,

parametric equations,

. line integrals,

. surface integrals and

. major theorems concerning their applications: Green’s theorem, Divergence theorem, Gauss theorem.
. Complex variable.

. Functions of a complex variable.

. Derivatives and Cauchy- Riemann equations.

. Integrals and Cauchy integral theorem.

. Power and Laurent Series.

. Residue theory.

. Conformal mapping and
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