ENGINEERING MATHEMATICS

SIXTH EDITION

Chapter 7

Lecture 1-Vector

Asst.Prof.Dr. Santhad Chuwongin

Outline

- 1. Vectors in 2-Space (2D)
- 2. Vectors in 3-Space (3D)
- 3. Dot Product
- 4. Cross Product
- 5. Lines and Planes in 3-Space
- 6. Vector Spaces
- 7. Gram–Schmidt Orthogonalization Process

เว็ปไซท์: www.symbolab.com

Vectors in 2-Space

- A scalar is a real number or quantity that has a magnitude, such as length and temperature
- A **vector** has both magnitude and direction and it can be represented by a boldface symbol or a symbol under an arrow, \mathbf{v} or \overrightarrow{AB}

Figure 07.1.1: Examples of vector quantities

- Characteristics of vectors
 - The vector \overrightarrow{AB} has an initial point at A and a terminal point at B
 - Equal vectors have the same magnitude and direction
 - The negative of a vector has the same magnitude and opposite direction

- Characteristics of vectors (cont'd.)
 - If $k \neq 0$ is a scalar, the **scalar multiple** of a vector \overrightarrow{kAB} is a vector that is |k| times \overrightarrow{AB}
 - Two vectors are parallel if they are nonzero scalar multiples of each other

Figure 07.1.3: Parallel vectors

Figure 07.1.4: Vector \overrightarrow{AD} is the sum of \overrightarrow{AB} and \overrightarrow{AC}

Figure 07.1.5: Vector \overrightarrow{CB} is the difference of \overrightarrow{AB} and \overrightarrow{AC}

Addition and Subtraction of 2-space vectors

Addition of 2-space vectors

Law of Cosines

$$\left| \overrightarrow{Z} \right| = \sqrt{\left| \overrightarrow{X} \right|^2 + \left| \overrightarrow{Y} \right|^2 + 2\left| \overrightarrow{X} \right| \left| \overrightarrow{Y} \right| \cos(\theta)}$$

Vectors in 2-Space (cont'd.)

$$a = 2i - 3j = \langle 2, -3 \rangle$$

- A vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is an ordered pair of real numbers where a_1 and a_2 are the **components** of the vector
 - Addition and subtraction of vectors, multiplication of vectors by scalars, and so on, are defined in terms of components

Definition 7.1.1 Addition, Scalar Multiplication, Equality

Let $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ be vectors in \mathbb{R}^2 .

(i) Addition:
$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$

(ii) Scalar multiplication:
$$k\mathbf{a} = \langle ka_1, ka_2 \rangle$$
 (2)

(iii) Equality:
$$\mathbf{a} = \mathbf{b}$$
 if and only if $a_1 = b_1$, $a_2 = b_2$ (3)

 The component definition of a vector can be used to verify the following properties of vectors

Theorem 7.1.1 Properties of Vectors

$$(i)$$
 $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$

(ii)
$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$

(iii)
$$\mathbf{a} + \mathbf{0} = \mathbf{a}$$

$$(iv) \quad \mathbf{a} + (-\mathbf{a}) = \mathbf{0}$$

$$(v)$$
 $k(\mathbf{a} + \mathbf{b}) = k\mathbf{a} + k\mathbf{b}$, k a scalar

$$(vi)$$
 $(k_1 + k_2)\mathbf{a} = k_1\mathbf{a} + k_2\mathbf{a}$, k_1 and k_2 scalars

(vii)
$$k_1(k_2\mathbf{a}) = (k_1k_2)\mathbf{a}$$
, k_1 and k_2 scalars

$$(viii)$$
 $1\mathbf{a} = \mathbf{a}$

$$(ix) \quad 0 \mathbf{a} = \mathbf{0}$$

← zero vector

- The magnitude, length, or norm of a vector **a** is denoted by $\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2}$
- A vector **u** with magnitude 1 is a **unit vector**
 - $-\mathbf{u} = (1/\|\mathbf{a}\|)\mathbf{a}$ is the normalization of \mathbf{a}
 - The unit vectors $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$ are the standard basis for two-dimensional vectors

$$\mathbf{a} = \langle a_1, a_2 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j}$$

where a_1 and a_2 are **horizontal** and **vertical components** of **a**, respectively

EXAMPLE

Vector Operations Using i and j

- (a) $\langle 4, 7 \rangle = 4\mathbf{i} + 7\mathbf{j}$
- **(b)** $(2\mathbf{i} 5\mathbf{j}) + (8\mathbf{i} + 13\mathbf{j}) = 10\mathbf{i} + 8\mathbf{j}$
- (c) $\|\mathbf{i} + \mathbf{j}\| = \sqrt{2}$
- (d) $10(3\mathbf{i} \mathbf{j}) = 30\mathbf{i} 10\mathbf{j}$
- (e) $\mathbf{a} = 6\mathbf{i} + 4\mathbf{j}$, $\mathbf{b} = 9\mathbf{i} + 6\mathbf{j}$ are parallel, since \mathbf{b} is a scalar multiple of \mathbf{a} . $\mathbf{b} = \frac{3}{2}\mathbf{a}$.

EXAMPLE

Graphs of Vector Sum/Vector Difference

Let $\mathbf{a} = 4\mathbf{i} + 2\mathbf{j}$ and $\mathbf{b} = -2\mathbf{i} + 5\mathbf{j}$. Graph $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$.

SOLUTION The graphs of $\mathbf{a} + \mathbf{b} = 2\mathbf{i} + 7\mathbf{j}$ and $\mathbf{a} - \mathbf{b} = 6\mathbf{i} - 3\mathbf{j}$ are given

Company ning.com

Vectors in 3-Space

• In three dimensions, or **3-space**, a rectangular coordinate system is constructed with three mutually orthogonal axes

Figure 07.2.2: Rectangular coordinates in 3-space

Figure 07.2.3: Octants

• The distance between two points

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

จงหาระยะทาง (d) ระหว่างจุด (2,-3,6) และ (-1,-7,4)

$$d = \sqrt{(2 - (-1))^2 + (-3 - (-7))^2 + (6 - 4)^2} = \sqrt{9 + 16 + 4} = \sqrt{29}$$

• The coordinates of the **midpoint** of a line segment between two points

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

• A vector **a** in 3-space is any ordered triple of real numbers

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$

Definition 7.2.1 Component Definitions in 3-Space

Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ be vectors in \mathbb{R}^3 .

- (i) Addition: $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$
- (ii) Scalar multiplication: $k\mathbf{a} = \langle ka_1, ka_2, ka_3 \rangle$
- (iii) Equality: $\mathbf{a} = \mathbf{b}$ if and only if $a_1 = b_1$, $a_2 = b_2$, $a_3 = b_3$
- (iv) Negative: $-\mathbf{b} = (-1)\mathbf{b} = \langle -b_1, -b_2, -b_3 \rangle$
- (v) Subtraction: $\mathbf{a} \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = \langle a_1 b_1, a_2 b_2, a_3 b_3 \rangle$
- (vi) Zero vector: $\mathbf{0} = \langle 0, 0, 0 \rangle$
- (vii) Magnitude: $\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

• Any vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ can be expressed as a linear combination of the unit vectors

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$
 $\mathbf{j} = \langle 0, 1, 0 \rangle$ $\mathbf{k} = \langle 0, 0, 1 \rangle$

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$

Figure 07.2.8a:
$$\mathbf{i}$$
, \mathbf{j} , and \mathbf{k} form a basis for R^3

$$(3,6,7), (-1,3,4)$$

Dot Product

• In 2-space,
$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$$

- In 3-space,
- In n-space,

Theorem 7.3.1 Properties of the Dot Product

(i)
$$\mathbf{a} \cdot \mathbf{b} = 0$$
 if $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$

(ii)
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

$$(iii) \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

(iv) $\mathbf{a} \cdot (k\mathbf{b}) = (k\mathbf{a}) \cdot \mathbf{b} = k(\mathbf{a} \cdot \mathbf{b}), \quad k \text{ a scalar}$

$$(v)$$
 $\mathbf{a} \cdot \mathbf{a} \ge 0$

$$(vi) \mathbf{a} \cdot \mathbf{a} = \|\mathbf{a}\|^2$$

← commutative law

← distributive law

• Alternative form of the dot product $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \cos \theta$

$$a = -3i - j + 4k, b = 2i + 14j + 5k, a \cdot b =$$

Dot Product (cont'd.)

- 2 vectors (**a** and **b**) are *orthogonal* if $\mathbf{a} \cdot \mathbf{b} = \mathbf{0}$
- The angle between two vectors is given by

$$\cos \theta = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

$$a = 2i + 3j + k, b = -i + 5j + k$$

$$||a|| = \sqrt{14}, ||b|| = \sqrt{27}, a.b = 14$$

$$\cos \theta = \frac{14}{\sqrt{14}\sqrt{27}} \Rightarrow \theta \approx 43.9^{\circ}$$

Component of a on b (ปริมาณสเกลาร์)

• The component of \mathbf{a} on \mathbf{b} คือ $\operatorname{comp}_{\mathbf{b}}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$

Component of a on b

• The component of **a** on **i** \Rightarrow comp_i $a = \frac{a \cdot i}{\|i\|} = a \cdot i$

• The component of **a** on **j** \Rightarrow comp_j $a = \frac{a \cdot j}{\|j\|} = a \cdot j$

• The component of **a** on **k** \Rightarrow comp_k $a = \frac{a \cdot k}{\|k\|} = a \cdot k$

Component of a on a vector b, we dot a with a unit vector in the direction of b

Projection of a on b (ปริมาณเว็คเตอร์)

$$proj_b a = (comp_b a) \left(\frac{b}{\|b\|}\right) = \left(\frac{a \cdot b}{\|b\|}\right) \left(\frac{b}{\|b\|}\right) = \left(\frac{a \cdot b}{\|b\|}\right) b$$

Projection of a on b

$$\operatorname{proj_ba} = (\operatorname{comp_ba}) \left(\frac{b}{\|b\|} \right) = \left(\frac{a \cdot b}{\|b\|} \right) \left(\frac{b}{\|b\|} \right) = \left(\frac{a \cdot b}{b \cdot b} \right) b$$

Find the projection of $\mathbf{a} = 4\mathbf{i} + \mathbf{j}$ onto the vector $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j}$. Graph.

Dot Product (Direction Cosines)

ถ้า $\mathbf{a} = \mathbf{a_1}\mathbf{i} + \mathbf{a_2}\mathbf{j} + \mathbf{a_3}\mathbf{k}$, มุม α , β , γ ระหว่างเวคเตอร์ \mathbf{a} และ เวคเตอร์ i,j,k จะถูกเรียกว่า "Direction Angles"

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{\|\mathbf{a}\| \|\mathbf{i}\|}, \cos \beta = \frac{\mathbf{a} \cdot \mathbf{j}}{\|\mathbf{a}\| \|\mathbf{j}\|}, \cos \gamma = \frac{\mathbf{a} \cdot \mathbf{k}}{\|\mathbf{a}\| \|\mathbf{k}\|}$$

$$\cos \alpha = \frac{a_1}{\|\mathbf{a}\|}, \cos \beta = \frac{a_2}{\|\mathbf{a}\|}, \cos \gamma = \frac{a_3}{\|\mathbf{a}\|}$$

 $\cos \alpha, \cos \beta, \cos \gamma$ are called "Direction Cosines"

$$a = 2i + 5j + 4k$$

$$\alpha = \cos^{-1}\left(\frac{2}{\sqrt{45}}\right) \approx 72.7^{\circ}$$

$$\alpha = \cos^{-1}\left(\frac{2}{\sqrt{45}}\right) \approx 72.7^{\circ} \qquad \beta = \cos^{-1}\left(\frac{5}{\sqrt{45}}\right) \approx 41.8^{\circ} \quad \gamma = \cos^{-1}\left(\frac{4}{\sqrt{45}}\right) \approx 53.4^{\circ}$$

www.iblearning.com

ตัวอย่าง

สมมุติให้ระยะ C - H เท่ากับ $1.1~{\rm \AA}$, $\theta = 109.5^{\circ}$ จงหาระยะ H - H=?

วะยะ H - H = ||b - a||

$$\|\mathbf{b} - \mathbf{a}\| = \sqrt{(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a})} = \sqrt{\mathbf{b} \cdot \mathbf{b} - 2\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}}$$

Cross Product

• Determinants (ทบทวน)

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \qquad \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

• Cross Product of 2 vectors is given by

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

Cross Product (cont'd.)

- $\mathbf{a} \times \mathbf{b}$ is *orthogonal* to the plane containing \mathbf{a} and \mathbf{b}
- The magnitude of the cross product is given by

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

- 2 nonzero vectors are parallel if $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \mathbf{0}^{\circ} = \mathbf{0}$
- $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$ if \mathbf{a} , \mathbf{b} , and \mathbf{c} are coplanar

Cross Product (cont'd.)

Theorem 7.4.1 Properties of the Cross Product

(i)
$$\mathbf{a} \times \mathbf{b} = \mathbf{0}$$
 if $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$ or \mathbf{a} parallel \mathbf{b}

(ii)
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

(iii)
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

(iv)
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{c})$$

(v)
$$\mathbf{a} \times (k\mathbf{b}) = (k\mathbf{a}) \times \mathbf{b} = k(\mathbf{a} \times \mathbf{b}), \quad k \text{ a scalar}$$

$$(vi)$$
 $\mathbf{a} \times \mathbf{a} = \mathbf{0}$

$$(vii)$$
 $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = 0$

(viii)
$$\mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) = 0$$

Lines and Planes in 3-Space

• The vector equation for a line

is
$$\mathbf{r} = \mathbf{r}_2 + t\mathbf{a}$$

- $-\mathbf{r},\,\mathbf{r}_1,\,\mathbf{r}_2$ คือเว็คเตอร์จากจุดกำเนิดชี้ไปที่เส้นตรง
- -สเกลาร์ t คือพารามิเตอร์
- —เว็คเตอร์ ${f a}$ คือเว็คเตอร์ทิศทาง (มีทิศทางเดียวกับเว็คเตอร์ ${f r-r}_2$)

Figure 07.5.1: Line through distinct points in 3-space

Example $P_1(x_1, y_1, z_1)$

จงหาสมการเวคเตอร์สำหรับเส้นตรงที่ผ่าน (2,-1,8) และ (5,6,-3)

$$a = \langle 5-2, 6-(-1), -3-8 \rangle = \langle 3, 7, -11 \rangle$$

ดังนั้น สมการเวคเตอร์ มีค่าเท่ากับ

$$\langle x,y,z \rangle = r_2 + t*a = \langle 2,-1,8 \rangle + t \langle -3,-7,11 \rangle$$

$$\langle x,y,z \rangle = r_2 + t*a = \langle 5,6,-3 \rangle + t \langle 3,7,-11 \rangle$$

Lines and Planes in 3-Space (cont'd.)

- The vector equation for a plane is $\mathbf{n} \cdot (\mathbf{r} \mathbf{r}_1) = 0$
 - Plane passes through a given point and has a specified normal vector n

- \mathbf{r}_1 and \mathbf{r} are vectors from the origin (0,0) to points P_1 , P_2 on the plane

Figure 07.5.3: Vector **n** is perpendicular to a plane

Ascend Learning Company www.jblearning.com

Examples

1. จงหาสมการของระนาบซึ่งมีเวคเตอร์ตั้งฉาก $\mathbf{n}=2\mathbf{i}+8\mathbf{j}-5\mathbf{k}$ และมีจุด (4,-1,3)

$$\overrightarrow{P_1P} = \mathbf{r} - \mathbf{r}_1 = (\mathbf{x} - 4)\mathbf{i} + (\mathbf{y} + 1)\mathbf{j} - (\mathbf{z} - 3)\mathbf{k} = 0$$
n. $(\mathbf{r} - \mathbf{r}_1) = 2(\mathbf{x} - 4) + 8(\mathbf{y} + 1) - 5(\mathbf{z} - 3) = 0$
 \therefore สมการของระนาบ คือ $2\mathbf{x} + 8\mathbf{y} - 5\mathbf{z} + 15 = 0$

 $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_1) = 0$ $P_1(x_1, y_1, z_1) \longrightarrow P(x, y, z)$

2. จงหาสมการของระนาบที่มีจุด (1,0,-1), (3,1,4) และ (2,-2,0) อยู่บนระนาบ

$$\begin{aligned}
&(3,1,4) \\
&(1,0,-1)\end{aligned} u = 2\mathbf{i} + 1\mathbf{j} + 5\mathbf{k}, \\
&(3,1,4) \\
&(2,-2,0)\end{aligned} v = 1\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} \\
&(x,y,z) \\
&(2,-2,0)\end{aligned} w = (x-2)\mathbf{i} + (y+2)\mathbf{j} + z\mathbf{k}
\end{aligned}$$

$$\begin{aligned}
&\mathbf{i} & \mathbf{j} & \mathbf{k} \\
&(2,-2,0)\end{aligned} v = (x-2)\mathbf{i} + (y+2)\mathbf{j} + z\mathbf{k}
\end{aligned}$$

$$\begin{aligned}
&\mathbf{i} & \mathbf{j} & \mathbf{k} \\
&2 & 1 & 5 \\
&1 & 3 & 4\end{aligned} = -11\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}
\end{aligned}$$

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = 0 = -11(\mathbf{x} - 2) - 3(\mathbf{y} + 2) + 5\mathbf{z}$$

$$-11x - 3y + 5z + 16 = 0$$

Examples

3. จงหาสมการของระนาบที่มีจุด (1, 2, -1), (4, 3, 1), (6, 4, 4) อยู่บนระนาบ

$$\begin{aligned}
&(1,2,-1) \\
&(4,3,1) \\
&(4,3,1) \\
&(6,4,4) \end{aligned} v = 2i + 1j + 3k \\
&(4,3,1) \\
&(x,y,z) \end{aligned} w = (x-4)i + (y-3)j + (z-1)k \\
&(x,y,z) \end{aligned} w = (x-4)i + (y-3)j + (z-1)k \\
&(x,y,z) \end{aligned} v = \begin{vmatrix} i & j & k \\ 3 & 1 & 2 \\ 2 & 1 & 3 \end{vmatrix} = i - 5j + k \\
&(x,y,z) \end{aligned} v = 0 = (x-4) - 5(y-3) + (z-1) \\
&(x,y,z) \end{aligned} v = 0 = (x-4) - 5(y-3) + (z-1) \\
&(x,y,z) \end{aligned} v = 0 = (x-4) - 5(y-3) + (z-1) \\
&(x,y,z) \end{aligned} v = 0 = (x-4) - 5(y-3) + (z-1) \\
&(x,y,z) \end{aligned} v = 0 = (x-4) - 5(y-3) + (z-1) \\
&(x,y,z) \end{aligned} v = 0 = 0$$

Examples

EXAMPLE 10 Graph of a Plane

Graph the equation 2x + 3y + 6z = 18.

EXAMPLE 11

Graph of a Plane

Graph the equation 6x + 4y = 12.

EXAMPLE 12

Graph of a Plane

Graph the equation x + y - z = 0.

Orthonormal Basis (ฐานเชิงตั้งฉาก)

- Every vector \mathbf{u} in R^2 (n=2) can be written as a linear combination of the vectors in the standard basis $B = \{\mathbf{e_1}, \mathbf{e_2}\}$, where $\mathbf{e_1} = \widehat{\mathbf{x}} = \mathbf{i} = \langle 1, 0 \rangle$, $\mathbf{e_2} = \widehat{\mathbf{y}} = \mathbf{j} = \langle 0, 1 \rangle$
- Every vector \mathbf{u} in R^3 can be written as a linear combination of the vectors in the standard basis $B = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\} = \{i, j, k\}$ หรือ $i = \langle 1, 0, 0 \rangle$, $j = \langle 0, 1, 0 \rangle$, $k = \langle 0, 0, 1 \rangle$

Orthonormal Basis (ฐานเชิงตั้งฉาก)

• Every vector \mathbf{u} in \mathbb{R}^n can be written as a linear combination of the vectors in the standard basis B =

$$\{\mathbf{e_1}, \mathbf{e_2}, ..., \mathbf{e_n}\}$$
, where $\mathbf{e_1} = \langle 1, 0, 0, ..., 0 \rangle$, $\mathbf{e_2} = \langle 0, 1, 0, ..., 0 \rangle$, ..., $\mathbf{e_n} = \langle 0, 0, 0, ..., 1 \rangle$

- Orthonormal basis = mutually orthogonal ($\mathbf{e_i} \cdot \mathbf{e_j} = 0$, $i \neq j$) and unit vectors ($\|\mathbf{e_i}\| = 1$, i = 1, 2, ..., n)
- HOW TO transform or convert any basis B of R^n into an orthonormal basis?

Example of Orthonormal Basis for R^3

Example of Orthonormal Basis for R^n

The set of three vectors

$$\mathbf{w}_1 = \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle, \mathbf{w}_2 = \left\langle -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right\rangle, \mathbf{w}_3 = \left\langle 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\rangle \tag{1}$$

is linearly independent and spans the space R^3 . Hence $B = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is a basis for R^3 . Using the standard inner product or dot product defined on R^3 , observe

$$\mathbf{w}_1 \cdot \mathbf{w}_2 = 0$$
, $\mathbf{w}_1 \cdot \mathbf{w}_3 = 0$, $\mathbf{w}_2 \cdot \mathbf{w}_3 = 0$, and $\|\mathbf{w}_1\| = 1$, $\|\mathbf{w}_2\| = 1$, $\|\mathbf{w}_3\| = 1$.

Hence *B* is an orthonormal basis.

A basis B for R^n need not be orthogonal nor do the basis vectors need to be unit vectors.

$$\mathbf{u}_1 = \langle 1, 0, 0 \rangle, \qquad \mathbf{u}_2 = \langle 1, 1, 0 \rangle, \qquad \mathbf{u}_3 = \langle 1, 1, 1 \rangle$$

in R^3 are linearly independent and hence $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a basis for R^3 . Note that B is not an orthogonal basis.

Generally, an orthonormal basis for a vector space V turns out to be the most convenient basis for V. One of the advantages that an orthonormal basis has over any other basis for \mathbb{R}^n is the comparative ease with which we can obtain the coordinates of a vector \mathbf{u} relative to that basis.

Orthonormal Basis

Theorem 7.7.1 Coordinates Relative to an Orthonormal Basis

Suppose $B = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ is an orthonormal basis for \mathbb{R}^n . If \mathbf{u} is any vector in \mathbb{R}^n , then

$$\mathbf{u} = (\mathbf{u} \cdot \mathbf{w}_1)\mathbf{w}_1 + (\mathbf{u} \cdot \mathbf{w}_2)\mathbf{w}_2 + \cdots + (\mathbf{u} \cdot \mathbf{w}_n)\mathbf{w}_n.$$

$$\mathbf{w}_1 = \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle, \mathbf{w}_2 = \left\langle -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right\rangle, \mathbf{w}_3 = \left\langle 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\rangle$$

Find the coordinates of the vector $\mathbf{u} = \langle 3, -2, 9 \rangle$ relative to the orthonormal basis B for R^3 given in (1) of Example 1. Write \mathbf{u} in terms of the basis B.

SOLUTION From Theorem 7.7.1, the coordinates of \mathbf{u} relative to the basis B in (1) of Example 1 are simply

$$\mathbf{u} \cdot \mathbf{w}_1 = \frac{10}{\sqrt{2}}, \quad \mathbf{u} \cdot \mathbf{w}_2 = \frac{1}{\sqrt{6}}, \quad \text{and} \quad \mathbf{u} \cdot \mathbf{w}_3 = -\frac{11}{\sqrt{2}}.$$

Hence we can write

$$\mathbf{u} = \frac{10}{\sqrt{3}}\mathbf{w}_1 + \frac{1}{\sqrt{6}}\mathbf{w}_2 - \frac{11}{\sqrt{2}}\mathbf{w}_3.$$

Gram-Schmidt Orthogonalization Process (แกรม-ชมิดท์ ออโธโกนอล โพรเซส)

- Gram—Schmidt orthogonalization process is an algorithm for generating an orthogonal basis $B' = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, from any given basis $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$, for R^n
- How?
- Key idea in the orthogonalization process is vector projection
- (ทบทวน proj_ba)
- Creating an orthonormal basis $B'' = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ by normalizing the vectors in the orthogonal basis B'

Gram–Schmidt Orthogonalization Process (Constructing an Orthogonal Basis for R²)

• Transformation of a basis $B = \{\mathbf{u}_1, \mathbf{u}_2\}$, for R^2 into an orthogonal basis $B' = \{\mathbf{v}_1, \mathbf{v}_2\}$ consists of 2 steps.

- Next, we project the remaining vector \mathbf{u}_2 in B onto the vector \mathbf{v}_1 and define a second vector to be $\mathbf{v}_2 = \mathbf{u}_2 \operatorname{proj}_{\mathbf{v}_1} \mathbf{u}_2$
- $\operatorname{proj}_{\mathbf{v}_1} \mathbf{u}_2 = \left(\frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1$

(a) Linearly independent vectors \mathbf{u}_1 and \mathbf{u}_2

(b) Projection of \mathbf{u}_2 onto \mathbf{v}_1

(c) \mathbf{v}_1 and \mathbf{v}_2 are orthogonal

Gram–Schmidt Orthogonalization Process (Constructing an Orthogonal Basis for R²)

$$\mathbf{v}_1 = \mathbf{u}_1$$

$$\mathbf{v}_2 = \mathbf{u}_2 - \left(\frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1$$

$$\mathbf{v}_2 \cdot \mathbf{v}_1 = 0$$

Gram–Schmidt Orthogonalization Process (Constructing an Orthogonal Basis for R²)

The set $B = \{\mathbf{u}_1, \mathbf{u}_2\}$, where $\mathbf{u}_1 = \langle 3, 1 \rangle$, $\mathbf{u}_2 = \langle 1, 1 \rangle$, is a basis for R^2 . Transform B into an orthonormal basis $B'' = \{\mathbf{w}_1, \mathbf{w}_2\}$.

SOLUTION We choose \mathbf{v}_1 as \mathbf{u}_1 : $\mathbf{v}_1 = \langle 3, 1 \rangle$. Then from the second equation in (3), with $\mathbf{u}_2 \cdot \mathbf{v}_1 = 4$ and $\mathbf{v}_1 \cdot \mathbf{v}_1 = 10$, we obtain

$$\mathbf{v}_2 = \langle 1, 1 \rangle - \frac{4}{10} \langle 3, 1 \rangle = \left\langle -\frac{1}{5}, \frac{3}{5} \right\rangle.$$

The set $B' = \{\mathbf{v}_1, \mathbf{v}_2\} = \{\langle 3, 1 \rangle, \langle -\frac{1}{5}, \frac{3}{5} \rangle\}$ is an orthogonal basis for \mathbb{R}^2 . We finish by normalizing the vectors \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{w}_1 = \frac{1}{\|\mathbf{v}_1\|} \mathbf{v}_1 = \left\langle \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \right\rangle \quad \text{and} \quad \mathbf{w}_2 = \frac{1}{\|\mathbf{v}_2\|} \mathbf{v}_2 = \left\langle -\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right\rangle.$$

The basis B is shown in **FIGURE 7.7.2(a)**, and the new orthonormal basis $B'' = \{\mathbf{w}_1, \mathbf{w}_2\}$ is shown in blue in Figure 7.7.2(b).

In Example above we are free to choose either vector in $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ as the vector \mathbf{v}_1 . However, by choosing $\mathbf{v}_1 = \mathbf{u}_2 = \langle 1, 1 \rangle$, we obtain a different orthonormal basis, namely, $B'' = \{\mathbf{w}_1, \mathbf{w}_2\}$, where $\mathbf{w}_1 = \langle 1/\sqrt{2}, 1/\sqrt{2} \rangle$ and $\mathbf{w}_2 = \langle 1/\sqrt{2}, -1/\sqrt{2} \rangle$.

© Sharpshot/Dreamstime.com Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

 $A = [3 \ 1;1 \ 1]'; B = grams(A)$

Gram–Schmidt Orthogonalization Process (Constructing an Orthogonal Basis for R³)

Now suppose $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a basis for R^3 .

Then the set $B' = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, where

$$\mathbf{v}_{1} = \mathbf{u}_{1}$$

$$\mathbf{v}_{2} = \mathbf{u}_{2} - \left(\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{u}_{3} - \left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}$$

$$\mathbf{v}_{3} = \mathbf{u}_{3} - \left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}$$

$$\mathbf{v}_{3} = \mathbf{u}_{3} - \left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}$$

Gram—Schmidt Orthogonalization Process (Constructing an Orthogonal Basis for R³)

The set $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$, where $\mathbf{u}_1 = \langle 1, 1, 1 \rangle, \mathbf{u}_2 = \langle 1, 2, 2 \rangle, \mathbf{u}_3 = \langle 1, 1, 0 \rangle$

is a basis for
$$R^3$$
. Transform B into an orthonormal basis B'' .

SOLUTION We choose \mathbf{v}_1 as \mathbf{u}_1 : $\mathbf{v}_1 = \langle 1, 1, 1 \rangle$. Then from the second equation in (4), with $\mathbf{u}_2 \cdot \mathbf{v}_1 = 5$ and $\mathbf{v}_1 \cdot \mathbf{v}_1 = 3$, we obtain

$$\mathbf{v}_2 = \langle 1, 2, 2 \rangle - \frac{5}{3} \langle 1, 1, 1 \rangle = \left\langle -\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right\rangle.$$
Now with $\mathbf{v}_2 \cdot \mathbf{v}_1 = 2$, $\mathbf{v}_1 \cdot \mathbf{v}_2 = 3$, $\mathbf{v}_2 \cdot \mathbf{v}_3 = -\frac{1}{3}$, and $\mathbf{v}_2 \cdot \mathbf{v}_3 = \frac{2}{3}$, the third equation in (4)

Now with $\mathbf{u}_3 \cdot \mathbf{v}_1 = 2$, $\mathbf{v}_1 \cdot \mathbf{v}_1 = 3$, $\mathbf{u}_3 \cdot \mathbf{v}_2 = -\frac{1}{3}$, and $\mathbf{v}_2 \cdot \mathbf{v}_2 = \frac{2}{3}$, the third equation in (4) yields $\mathbf{v}_3 = \langle 1, 1, 0 \rangle - \frac{2}{3} \langle 1, 1, 1 \rangle + \frac{1}{2} \left\langle -\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right\rangle$

$$\mathbf{v}_{3} = \langle 1, 1, 0 \rangle - \frac{1}{3} \langle 1, 1, 1 \rangle + \frac{1}{2} \langle -\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$$

$$= \langle 1, 1, 0 \rangle + \langle -\frac{2}{3}, -\frac{2}{3}, -\frac{2}{3} \rangle + \langle -\frac{1}{3}, \frac{1}{6}, \frac{1}{6} \rangle = \langle 0, \frac{1}{2}, -\frac{1}{2} \rangle.$$

The set $B' = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{\langle 1, 1, 1 \rangle, \langle -\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \rangle, \langle 0, \frac{1}{2}, -\frac{1}{2} \rangle \}$ is an orthogonal basis for \mathbb{R}^3 . $A = [1 \ 1 \ 1; 1 \ 2 \ 2; 1 \ 1 \ 0]';$ $B'' = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}, \text{ where }$

B = grams(A) $\mathbf{w}_1 = \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle, \quad \mathbf{w}_2 = \left\langle -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right\rangle, \quad \mathbf{w}_3 = \left\langle 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\rangle.$

Theorem 7.7.2 Gram-Schmidt Orthogonalization Process

Let $B = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m}, m \le n$, be a basis for a subspace W_m of R^n . Then $B' = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m}$, where

$$\mathbf{v}_1 = \mathbf{u}_1$$

$$\mathbf{v}_2 = \mathbf{u}_2 - \left(\frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1$$

$$\mathbf{v}_3 = \mathbf{u}_3 - \left(\frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 - \left(\frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2}\right) \mathbf{v}_2 \tag{7}$$

:

$$\mathbf{v}_m = \mathbf{u}_m - \left(\frac{\mathbf{u}_m \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 - \left(\frac{\mathbf{u}_m \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2}\right) \mathbf{v}_2 - \cdots - \left(\frac{\mathbf{u}_m \cdot \mathbf{v}_{m-1}}{\mathbf{v}_{m-1} \cdot \mathbf{v}_{m-1}}\right) \mathbf{v}_{m-1},$$

is an orthogonal basis for W_m . An orthonormal basis for W_m is

$$B'' = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\} = \left\{ \frac{1}{\|\mathbf{v}_1\|} \mathbf{v}_1, \frac{1}{\|\mathbf{v}_2\|} \mathbf{v}_2, \dots, \frac{1}{\|\mathbf{v}_m\|} \mathbf{v}_m \right\}.$$

Thanks

- สมมุติว่า $B = \langle \mathbf{w_1}, \mathbf{w_2}, ..., \mathbf{w_n} \rangle$ เป็นฐานตั้งฉาก (Orthogonal basis) สำหรับ \mathbf{R}^n และถ้า \mathbf{u} เป็นเว็คเตอร์ใดๆใน \mathbf{R}^n , ดังนั้น
 - $\mathbf{u} = (\mathbf{u} \cdot \mathbf{w}_1)\mathbf{w}_1 + (\mathbf{u} \cdot \mathbf{w}_2)\mathbf{w}_2 + \dots + (\mathbf{u} \cdot \mathbf{w}_n)\mathbf{w}_n$
- ullet ฐาน B ของ ${f R}^n$ สามารถถูกแปลงเป็นฐานที่ตั้งฉาก
- $B' = \langle \mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n} \rangle$ แล้วแปลงเป็นฐานที่ตั้งฉาก $B'' = \langle \mathbf{w_1}, \mathbf{w_2}, ..., \mathbf{w_n} \rangle$ โดยการทำนอร์มอลไลซ์เว็คเตอร์ใน B'
- ullet เว็คเตอร์ \mathbf{v}_n และ \mathbf{w}_n เป็นเว็คเตอร์ที่ตั้งฉากกันและเป็นเว็คเตอร์หน่วย

• <u>ตัวอย่าง:</u> การแปลงเซ็ท $B=\{\mathbf{u_1},\mathbf{u_2}\}$ ไปเป็นฐานตั้งฉาก $B''=\{\mathbf{w_1},\mathbf{w_2}\}$ (โดยที่ $\mathbf{u_1}=\langle 3,1 \rangle$ และ $\mathbf{u_2}=\langle 1,1 \rangle$)

- เดือก
$$\mathbf{v_1}=\mathbf{u_1}=\langle 3,1\rangle$$
 และ $\mathbf{v_2}=\mathbf{u_2}-\left(\frac{\mathbf{u_2\cdot v_1}}{\mathbf{v_1\cdot v_1}}\right)\mathbf{v_1}=\langle 1,1\rangle-\frac{4}{10}\langle 3,1\rangle=\left\langle -\frac{1}{5},\frac{3}{5}\right\rangle$

— เซ็ท
$$B'=\left\{\langle 3,1\rangle,\left\langle -\frac{1}{5},\frac{3}{5}\right\rangle\right\}$$
 จะมีฐานตั้งฉากสำหรับ R^2

• ตัวอย่าง:

- ทำได้โดยการนอร์มัลไลซ์เว็คเตอร์ $\mathbf{v_1}$ และ $\mathbf{v_2}$

$$\mathbf{w_1} = \frac{\mathbf{v_1}}{\|\mathbf{v_1}\|} = \left\langle \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \right\rangle$$
 และ $\mathbf{w_2} = \frac{\mathbf{v_2}}{\|\mathbf{v_2}\|} = \left\langle -\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right\rangle$

- ฐานใหม่ที่ตั้งฉาก(new orthonormal basis) เท่ากับ

$$-B'' = \{\mathbf{w_1}, \mathbf{w_2}\} = \left\{ \left\langle \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \right\rangle, \left\langle -\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right\rangle \right\}$$

ปริภูมิเวกเตอร์ (Vector Spaces)

- ullet เซ็ทของเว็คเตอร์ $B=\langle \mathbf{x_1},\mathbf{x_2},\dots,\mathbf{x_n}
 angle$ ในปริภูมิเวกเตอร์ V คือเกณฑ์หลักสำหรับ V ถ้า
 - -B เป็นอิสระแบบเชิงเส้น (linearly independent)
 - แต่ละเว็คเตอร์ใน V จะอยู่รูปผลรวมเชิงเส้นของเว็คเตอร์เหล่านั้น
 - เซ็ทของเว็คเตอร์ $\langle \mathbf{X_1}, \mathbf{X_2}, \dots, \mathbf{X_n} \rangle$ เป็นอิสระเชิงเส้น ถ้ามี ค่าคงที่ที่สอดคล้องกับสมการด้านล่าง
 - $-k_1\mathbf{x_1}+k_2\mathbf{x_2}+\cdots+k_n\mathbf{x_n}=\mathbf{0}$ เพราะ $k_1=k_2=\cdots k_n=0$

- 1. Introduction to multi-variable calculus.
- 2. Polar coordinates.
- 3. Analysis of functions of several variables,
- 4. vector valued functions,
- 5. partial derivatives, and
- 6. multiple integrals.
- 7. Vector analysis.
- 8. Optimization techniques,
- 9. parametric equations,
- 10. line integrals,
- 11. surface integrals and
- 12. major theorems concerning their applications: Green's theorem, Divergence theorem, Gauss theorem.
- 13. Complex variable.
- 14. Functions of a complex variable.
- 15. Derivatives and Cauchy-Riemann equations.
- 16. Integrals and Cauchy integral theorem.
- 17. Power and Laurent Series.
- 18. Residue theory.
- 19. Conformal mapping and
- 20. Fourier series applications.