¢
%057%2;%%%07@7707/6\/7%77??3\1

Fundamentals of Industrial Robaolics

g‘i

WAL.AS. FUNG gqaé@um%

musmﬂ:l:u‘[a@'u%fsmeewg%mﬁﬂﬁe

KUKA KRI1I6L6

Hartenberg Parameters

it

Denav

’E
74
)
(@
=

(%4

v

: BUALAU X ADIATUITIOAALASANRINAULNUY Z.

J

J

Denavit-Hartenberg Parameters

o))
*
b7y —t+—— 6GED ——

Pose in 3SD:Homogeneous Transformation
Matrix of KUKA KR16

A1=0; A2=-90; A3=0; A4=0; A5=0; A6=0; #as figure | KRI6L6=models. DHKRIGLO0:
T1 = trotz(Aldeg): T = KR16L6.fkine([0,-pi/2, 0, 0, 0, 0]). printline("rpy/xyz") #as figure

#sol = KR16L6.ikine a(T)
T2 = transl(0.26,0,0.675)@trotx(-90,'deg") @trotz(A2+90,'deg');

T3 = transl (0,-0.68,0)@trotz(-90,'deg) @trotz(A3,'deg"); t = 1.34, 0, 1.32; rpy/xyz = 0°, 90°, -180°
T4 = transl(-0.035,0,0)@trotx(-90,'deg")@trotz(A4,'deg"); 0 0 1 1. 345
T5 = transl(0,0,0.97)@trotx(90,'deg)@trotz(A5,'deg); ? (l) 8 ? 32
T6 = transl(0,0.115,0)@trotx(-90,'deg)@trotz(A6,'deg"); 0 0 0 [
T=TI@T2@T3@T4@T5@T6
array ([[0, 0, 1, 1.345],
0, -1, 0, 0],
[1, 0, 0, 1.32],
[0, 0, 0, 1 R = rpy2r(0, pi/2, -pi, order="xyz")
>>> R = rpy2r (0, pi/2, -pi, order=)
array ([[0, 0, 1],
|: O) 711 0])

[1, 0, 0]])

DH Parameters for KUKA KR16 1.6

>>> KR16L6
DHRobot: KR16L6 (by KUKA), 6 joints (RRRRRR), dynamics,

geometry, standard DH parameters

10 1 d | a Y g g |
F----4---=---- 2 t-=-=====- t-—--——==- 2 i
1 gl | 0.675 | 0.26 | —90.0° | —-185.0° | 185.0° |
| g2 | 0 | 0.68 | 0.0° | =155.0° | 35.0°
| g3 | 0 -0.035 | -90.0° | —-130.0° | 154.0° |
g4 | 0.97 0 90.0° | =-350.0° | 350.0° |
I I I I . I I I
I I I I . I I . I

KUKA KR3

Denavit-Hartenberg Parameters

497 152

Pose in 3D:Homogeneous Transformation
Matrix of KUKA KR3 (Python Version)

Python code ### ### Python code

A1=0; A2=-90; A3=0; A4=0; A5=0; A6=0; #as figure KR3 = models.DH.KR3();
#A1=0;A2=-90;A3=0;A4=0;A5=0;A6=0; #totally vertical KR3.fkine([0,-pi/2,0,0,0,0]);

T1 = trotz(A1,'deg"); KR3.fkine([0,-pi/2,0,0,0,0]).printline("rpy/xyz") #as figure

T2 = trans1(0.020,0,0.345)@trotx(-90,'deg")@trotz(A2+90,'deg"); #KR3.fkine([0,-pi/2,-pi/2,0,0,0]).printline("rpy/xyz") #totally vertical

T3 = transl(0,-0.260,0)@trotz(-90,'deg") @trotz(A3,'deg");

T4 =t 1(0.020,0,0)@trotx(-90,'deg')@trotz(A4,'deg');
ransl()@trotx(-90, deg)@trotz(Ad,deg) t = 0.355, 0, 0.625: rpy/xyz = 0°, 90°, —180°

T5 = transl(0,0,0.260)@trotx(90,'deg")@trotz(A5,'deg");

T6 = transl(0,0.075,0)@trotx(-90,'deg") @trotz(A6,'deg"); 8 —(l) (l) 8 399
T=TI@T2@T3@T4@T5@T6 (l) 8 8 (l). 625
arra 0, 0, 1, 0. 355/, : :
array(l % 0, -1, 0, 0% , R = rpy2r(0, pi/2, -pi, order="xyz")
[L 0, 0, 0.625],
[0, 0, 0, 11]) >>> R = rpy2r (0, pi/2, -pi, order=)
array ([[0, 0, 1],
[OJ 7]‘7 0] b

[1, 0, 0]])

DH Parameters for KUKA KR3

> KR3
DHRobot: KR3 (by KUKA), 6 joints (RRRRRR), dynamics,

geometry, standard DH parameters

16 1 d a1 aj I q I q |
R pommo - pommo o pommm oo pommm o 1
. ql | 0.345 1 0.02 ; -90.0° | -170.0° | 170.0° |
| q2 | 0 0.26 0.0° | —-170.0° | 50.0°
| g3 | 0 0.02 | -90.0° | —-110.0° | 155.0° |
g4 | 0.20 | 0 90.0° | —-175.0° | 175.0°
| qo | 0 | 0 -90.0° | —-120.0° | 120.0° |
1 gb | 0.075 | 0 0.0° | =350.0° | 350.0° |

KUKA KR6

KUKA KR6

Dimensions: mm

83.2

656

851.,5

Pose in 3SD:Homogeneous Transformation
Matrix of KUKA KR6

Python code ### ### Python code

A1=0; A2=-90; A3=0; A4=0; A5=0; A6=0; KR6 = models.DH.KR6();

T1 = trotz(A1,'deg"); KR6.1kine([0,-pi/2,0,0,0,0]).printline("rpy/xyz") #as figure

T2 = transl(0.025,0,0.4)@trotx(-90,'deg) @trotz(A2+90,'deg'); #KR6.fkine([0,-pi/2,-pi/2,0,0,0]).printline("rpy/xyz") #totally vertical

T3 = transl (0,-0.455,0)@trotz(-90,'deg")@trotz(A3,'deg");

T4 = transl(0.035,0,0)@trotx(-90,'deg) @trotz(A4,'deg'); t = 0.525, 0, 0.89; rpy/xyz = 0°, 90°, -180°

T5 = transl(0,0,0.420)@trotx(90,'deg") @trotz(AS,'deg");

0 0 1 0. 525
T6 = transl(0,0.080,0)@trotx(-90,'deg") @trotz(A6,'deg'); 0 -1 0 0
1 0 0 0. 89
T=TI@T2@QT3@T4@T5@T6 0 0 0 1
array ([[0, 0, 1, 0.525],
0, -1, 0, 0],
% (1) 8 8 0. 8% 1) R = rpy2r(0, pi/2, -pi, order="xyz")
>>> R = rpy2r (0, pi/2, -pi, order=)
array ([[0, 0, 11,
[O’ 7]‘7 0] b

[1, 0, 0]])

DH Parameters for KUKA KR6

> KRb
DHRobot: KR6 (by KUKA), 6 joints (RRRRRR), dynamics,

geometry, standard DH parameters

10 1 di 1 a Y I q I q |
fom oo pommm - pommm oo pommm oo pommm o 1
gl ¢ 0.4 0.025 | -90.0° ; -170.0° | 170.0° |
| g2 | 0 | 0.455 | 0.0° | —-190.0° | 45.0° |
| g3 | 0 0.03 | —-90.0° | —-120.0° | 15h6.0° |
g4 | 0.42 | 0 90.0° | —185.0° | 185.0° |
| qo | 0 | 0 -90.0° | —-120.0° | 120.0° |
1 gb | 0.08 | 0 0.0° | —-350.0° | 350.0° |

Pose in 3D:Homogeneous Transformation
Matrix of KUKA KR6

LY X=R(0,) R (0,) R.(9,)
A=-116.09; % yaw

B=90; % pitch
C=-116.09; % roll

RPY1 = rpy2tr(C, B, A ,'deg’) %

RPY2 = rotz(A ,'deg’) * roty(B ,'deg') * rotx(C ,'deg')

ABB I'RB120

a3

a2

d1

ABB IRB120

d4

70

270

290

Pose in 3.

D:Homogeneous Transformation

Matrix of ABBIRB120

Python code

T1 = trotz(Al,'deg");

A1=0; A2=-90; A3=0; A4=0; A5=0; A6=0;

T2 = transl(0,0,0.29)@trotx(-90,'deg") @trotz(A2+90,'deg");
T3 = transl(0,-0.27,0)@trotz(-90,'deg") @trotz(A3,'deg");
T4 = transl(0.07,0,0)@trotx(-90,'deg") @trotz(A4,'deg");

T5 = transl(0,0,0.302)@trotx(90,'deg") @trotz(AS,'deg");

T6 = transl(0,0.072,0)@trotx(-90,'deg) @trotz(A6,'deg');
T=TI@T2@T3@T4@T5@T6

Python code
IRB120 = models.DH.IRB120();
IRB120.fkine([0,-pi/2,0,0,0,0]).printline("rpy/xyz") #as figure

#IRB120.fkine([0,-pi/2,-pi/2,0,0,0]).printline("rpy/xyz") #totally vertical

array ([[0,
0,

[1,

[0,

oo O

3

0.374],

0],

0.63],
111)

t = 0.374, 0, 0.63; rpy/xyz = 0°, 90°, -180°

0 0 1 0.374
0 -1 0 0
1 0 0 0.63
0 0 0 |
R = rpy2r(0, pi/2, -pi, order="xyz")
>>> R = rpy2r (0, pi/2, -pi, order=)
array ([[0, 0, 11,
[0, -1, 0],
[1, 0, 011)

Ref: D:\Study\Study\KMITL_Fundamentals_of_Industrial_Robot\RVC3-python-main\RVC3-python-main\robotics-toolbox-python\roboticstoolbox\models\DH\IRB120

IRB 120 (by ABB), 6 joints (RRRRRR), dynamics,
standard DH parameters

DH Parameters for ABBIRB120

>>> 1IRB120
geometry,

DHRobot :

- - - - - — —/ "~

]

|

|

|

|

|

|

|

- + - = = = — — —
| | |
I | o o o ©o o0 o I
I | S OO O
| | - - |
T O OO OO OO
| _802020 |
T T
| | |
I — _
- + - = = = — — —
| | |
I | o o o ©o o o I
I - O OO OO O
| u | - - - - |
I | O O OO OO
| _ﬁ_U ﬁ_qu_u _
| | |
I — _
- + - = = = — — —
| | |
I e | OO OO
_a | AN O |
| | . . |
| | o O |
| — 1 |
- + - = = = — — —
| | |
| _900202 |
I — 1 &N O 0~
o . g S
| _0 - - |
_ _ - o
[| |
- + - - — — — — —
| | |
I o] ™ O <HLO O
_ OO T T T T T
I D I

= - L e e —_— —_— — — 4

Universal Robots URS

a2
d

= <
S9vé6 C'C6E TA% ov'68

Pose in 3SD:Homogeneous Transformation
Matrix of URS

#it# Python code ### ### Python code ###
A1=0; A2=-90; A3=0; A4=-90; A5=0; A6=0; URS5 = models.DH.URS5();
T1 = trotz(A1l,'deg"); URS5.fkine([0,-pi/2,0,-pi/2,0,0]).printline("rpy/xyz") #as figure

T2 = transl(0,0,0.089459)@trotx(90,'deg")@trotz(A2+90,'deg');
t =0, -0.191, 1; rpy/xyz = —-180°, 0=, 90°
T3 = transl(0,0.425,0)@trotz(-90,'deg) @trotz(A3,'deg");

T4 = transl(-0.39225,0,0)@trotz(A4+90,'deg"); -1 0 0 0
#T5 = transl(0,0,0.10915)@troty(-90,'deg) @trotz(-90,'deg")@ trotz(A5+180,'deg’); 8 (l) é (1) ég } 4
T5 = transl(0,0,0.10915)@trotx(90,'deg" @troty(-90,'deg"@ trotz(A5+180,'deg'); 0 0 0] |
T6 = transl(0,0,0.09465)@trotx(90,'deg) @trotz(A6,'deg")@transl(0,0,0.0823);
T=TI@T2@T3@T4@T5@T6
array ([[1, 0, 0, 0],
[0, 0, -1, -0. 1914], . . " "
[0 1 0 1.001], R = rpy2r(-pi, 0, pi/2, order="xyz")
[0, 0, 0, 11D >>> R = rpy2r (-pi, 0, pi/2, order=)
array ([[-1, 0, 0],
0, 0, -1],
[0, -1, 011)

Ref: D:\Study\Study\KMITL_Fundamentals_of_Industrial_Robot\RVC3-python-main\RVC3-python-main\robotics-toolbox-python\roboticstoolbox\models\DH\UR5

Pose in 3.

Matrix of URS

D:Homogeneous Transformation

Python code
Al1=0; A2=-90; A3=0; A4=-90; A5=0; A6=0;

T1 = trotz(A1,'deg");

T2 = transl(0,0,0.089459) @trotx(90,'deg")@trotz(180,'deg") @trotz(A2+90,'deg');

T3 = transl(0,-0.425,0)@trotz(90,'deg")@trotz(A3,'deg');

T4 = transl(-0.39225,0,0)@trotz(A4+90,'deg');

T5 = transl(0,0,0.10915)@trotx(-90,'deg) @troty(-90,'deg)@ trotz(A5,'deg");

T6 = transl(0,0,0.09465)@trotx(90,'deg")@trotz(A6,'deg")@transl(0,0,0.0823);

T=TI@QT2@T3@T4@T5@T6

array([[1, 0, 07
[0, 0, -1,
[0, L, 0,
[0, 0, 0,

Python code
URS5 = models.DH.URS5();
URS5.fkine([0,-pi/2,0,-pi/2,0,0]).printline("rpy/xyz") #as figure
t =0, -0.191, 1; rpy/xyz = —-180°, 0=, 90°
-1 0 0 0
0 0 -1 -0. 1914
0 -1 0 1.001
0 0 0 l
0],
-0.1914], i i " "
1.001], R = rpy2r(-pi, 0, pi/2, order="xyz")
11D >>> R = rpy2r (-pi, 0, pi/2, order=)
array ([-1, 0, 0],
0, 0, -1],
[0, -1, 0]1)

Ref: D:\Study\Study\KMITL_Fundamentals_of_Industrial_Robot\RVC3-python-main\RVC3-python-main\robotics-toolbox-python\roboticstoolbox\models\DH\UR5

DH Parameters for URoS

> URD
DHRobot: UR5 (by Universal Robotics),

6 joints (RRRRRR), dynamics,
standard DH parameters

10 | dj | aj | aj |
e pommm oo pommm oo 1
1 gl | 0.08946 | 0 90.0° |
| q2 | 0 -0.425 0.0° |
| g3 | 0 —0.3922 | 0.0° |
g4 | 0.1091 | 0 90.0°
1 go | 0.09465 | 0 —-90.0°
1 go | 0.0823 | 0 | 0.0° |

PUMAS560

Denavit-Hartenberg Parameters

puma = models.DH.Puma560();
T = puma.fkine(puma.qn);

T.printline()

sol = puma.ikine_a(T)

Denavit-Hartenberg parameters for Puma

0.0000 0.0000
N q2 0.0000 0.4318 0
g ____ q3 0.1500 0.0203 -1/2
: - q4 0.4318 0.0000 /2
q5 0.0000 0.0000 -m/2

q6 0.0000 0.0000 0

(= Unimate Puma 500
— Oussama Khatib | Used with permission

https://robotacademy.net.au/

Denavit-Hartenberg Parameters

DH Parameters for Puma560

>>> puma = models. DH. Puma560 () ;

DHRobot : Puma 560 (by Unimation), 6 joints (RRRRRR),
dynamics, geometry, standard DH parameters

10 I d; | daj | aj | d | d

fomm g T —— TR T T 4
gl | 0.6718 | 0, 90.0° ; —-160.0° | 160.0°
g2 | 0, 0.4318 | 0.0 —-110.0° ; 110.0°
Qg3 0.15 | 0.0203 | —90.0° | —135.0° | 135.0° |
g4 | 0.4318 | 0O 90.0° | —266.0° | 266.0°
g | 0 0 -90.0° ; —-100.0° | 100.0°
I g6 | 0 0 0.0° | —-266.0° | 266.0° |

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Denavit-Hartenberg Parameters
	Slide 5: Pose in 3D:Homogeneous Transformation Matrix of KUKA KR16
	Slide 6: DH Parameters for KUKA KR16_L6
	Slide 7
	Slide 8
	Slide 9: Denavit-Hartenberg Parameters
	Slide 10: Pose in 3D:Homogeneous Transformation Matrix of KUKA KR3 (Python Version)
	Slide 11: DH Parameters for KUKA KR3
	Slide 12
	Slide 13
	Slide 14: Pose in 3D:Homogeneous Transformation Matrix of KUKA KR6
	Slide 15: DH Parameters for KUKA KR6
	Slide 16: Pose in 3D:Homogeneous Transformation Matrix of KUKA KR6
	Slide 17
	Slide 18
	Slide 19: Pose in 3D:Homogeneous Transformation Matrix of ABB IRB120
	Slide 20: DH Parameters for ABB IRB120
	Slide 21
	Slide 22
	Slide 23: Pose in 3D:Homogeneous Transformation Matrix of UR5
	Slide 24: Pose in 3D:Homogeneous Transformation Matrix of UR5
	Slide 25: DH Parameters for UR5
	Slide 26
	Slide 27
	Slide 28: Denavit-Hartenberg Parameters
	Slide 29

